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AbslmcL In this paper we have camed out a quantum study of the features of the 
spin wave spectrum of a superlattice m m p a l  of alternating layers of two different 
ferromagnetic materials or a ferromagnetic material and a non-magnetic material, with a 
ferromagnetic mupling at the interfaces. Depending on the intensity of the interactions in 
the inlerfaces and on the layer thickness vely different types of thermal behaviour of the 
magnetizalion can be obtained. In the case of the ferromagnetic-non-magnetic system a 
clear tendency to a tidimensional type of behaviour h shown when the exchange mupling 
at the interfaces is wry small, and a dear dependence of the thermal demagnetization 
on the layer thickness h observed. In lhe case of the system amposed of two different 
ferromagnetic malerials, in the weakcoupling limit at the inletfaces we observe a more 
rapid decrease of the magnetization with temperature for thinner unit cells. l l e  opposite 
type of behaviour is observed in the strongcoupling limit. 

1. Introduction 

The term ’superlattice’ is used to denote a regularity in a physical quantity (charge 
density, spin density, etc) which has a larger period than the period of the micro- 
scopic unit cell. The progress of evaporation techniques in recent years has made it 
possible to control the layer thickness at the atomic scale and to fabricate artificial 
superlattices. 

Superlattices are interesting mainly from the following two viewpoints: 

(i) as a model system for basic research; 
(ii) as new materials that can only be obtained artificially. 

Since superlattices are fabricated artificially we can design the structure of the 
samples in such a way as to study a specified problem or to magnify a desired prop- 
erty. Among other interesting problems, superlattices are very suitable systems for 
studying the magnetic properties of ultrathin films, surface effects and periodicity 
effects. From an experimental point of view a considerable number of papers have 
been published on the magnetic properties of different multilayered systems (NVCu 
[l], Fe/V [Z], R/Si [3], Cu/Mn [4], etc). On the other hand, early theoretical papers 
on magnetic excitations in superlattices were focused mostly on the magnetostatic 
modes. A calculation of the magnon energies for the propagation direction parallel 
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to the surface of the superlattice and perpendicular to the magnetization was given 
by Griinberg and Mika [SI. Different calculations for general propagation directions 
have been performed by Camley et a1 [6, 7. Camley and Cottam [SI have considered 
antiferromagnetic and ferromagnetic superlattices. Other papers have considered ex- 
change effecrs. Albuquerque el ul [9] studied the spin wave spectrum of a superlattice 
of two different materials using Bloch's equations and the transfer matrix method. 
Dobrzynski a 01 [lo] considered only exchange effects in a system composed of two 
different ferromagnetic materials in the framework of the Heisenberg model, obtain- 
ing in closed form the bulk and surface magnetic Green functions for a superlattice 
system. Morkowski and Szajek [ll] performed a study of the spin wave spectrum 
in a system with periodically modulated exchange integrals. An extensive study of a 
superlattice of two alternating ferromagnetic materials based on an inhomogeneous 
Ginzburg-Landau functional, including the temperature dependence of the magneti- 
zation and the spin dynamics using a generalized Bloch equation, has been performed 
by Schwenk a nl [12]. 

Previous studies of M ( T )  in superlattice structures have concentrated on the low- 
temperature regime. In this case the dispersion relation in the small-K limit can be 
written in the form w = D K 2 +  D'q2, where q is the Bloch wavevector perpendicular 
to the layers. As a result the magnetization decreases as a function of tem erature 

different from the value in the bulk materials and reflects the superlattice structure to 
some degree, that is the dispersion relation in the small-wavevector limit is different 
in the superlattice as compared with the bulk. Of course in the superlattice the 
artificial periodicity introduces gaps in the dispersion relation as well as changes in 
the small-wavevector dispersion relation. In contrast to previous work, our results 
focus on the changes in M ( T )  introduced by the gaps and the  effects of the external 
applied field. In addition to changes in E' we find that the gaps can significantly 
change the p e r  law for the decrease in magnetization with temperature. Thus 
if one measures M (  T) above the low-temperature limit, one apparently obtains a 
decrease in magnetization of the form M ( T )  = B'T". For the examples we have 
considered we found a can range from about 1.2 to 1.6 when no field is applied. 

In the present paper we shall discuss the properties of the spin wave spectrum 
of two different superlattice systems. In the first case the superlattice is made up 
of alternating films of ferromagnetic and nonmagnetic materials. The ferromagnetic 
film is arranged in a simple cubic structure. For the purposes of numerical calculations 
the ferromagnetic materials will be considered to have a moment of S = 5 and an 
exchange integral J = 27.6 x erg. The non-magnetic material layer thickness is 
taken into a m "  by means of J,; this parameter governs the exchange interactions 
between two consecutive films of ferromagnetic material. 

In the second case studied the superlattice is composed of alternating films of 
two different ferromagnetic materials (hereafter referred to as materials 1 and 2), 
both arranged in a simple cubic structure. The characteristics of each material are 
taken into account by means of the corresponding moments, S, and S,, and the 
exchange integrals, J ,  and J, .  For the purposes of numerical calculations the values 
chosen for these parameters are S, = 3, S, = 5, J ,  = 14.19 x erg and 
J ,  = 27.6 x erg. 

The interaction in the interface between the materials is taken to be ferromagnetic 
and its value is gauged hy means of the parameter J ,  (.I1 < 5, < J 2 ) .  The coordinate 
system is constructed so that the Y-axis is perpendicular to the interfaces between the 
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in a similar fashion to the decrease in bulk materials, that is M ( T )  = B'T3 P z. E' is 
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different films. The external applied field H, is directed parallel to the superlattice 
plane in the Zduection. The collective magnetic excitations of the system will be 
investigated as a function of the layer thickness and the intensity of the interface 
exchange interaction as well as the temperature and the external applied field. 

2. Theory 

As we have mentioned above we shall study firstly a superlattice system made up 
of alternating films of ferromagnetic and nonmagnetic materials. The ferromagnetic 
material is arranged in a simple cubic structure. We shall consider that exchange 
interactions are dominant so we shall neglect dipolar interactions, furthermore we 
shall take into account nearest-neighbour interactions only. 

The magnetic behaviour of the system is described by a Heisenberg-type Hamil- 
tonian plus a Zeeman term that takes into account the interaction with the external 
applied field: 

Here the sum in the first term is over the sites i and the nearest neighbours 
j ,  H is a static external field directed along the Z-axis and S is the spin angular 
momentum operator. By using the raising, S+, and lowering, S-, spin operators the 
Hamiltonian takes the following form in the absence of a magnetic field: 

'RJ proceed it is convenient to introduce the boson creation and annihilation 
operators ai and ai, respectively, defined by the well hown Holstein-Primakoff 
transformation [13], which is given by the following relations: 

Finally another transformation from the atomic operators a!, ai  to the magnon 
variables aL,  aK is made. Spin waves could be introduced in this way by the 
following Fourier expansion [14] in terms of the wavevecton K, 

(4) 
1 1 

a L = - x a l e x p ( - i K . R j )  aK = - x a j e x p ( i K . R j )  d 7 ,  1 J i s ,  J 

where Rj is the position vector of the atom j and N is the total number of spins. 
When the transformation defined by (3) is introduced in (%) a very complex expression 
is obtained. Usually the following approximations are considered 1151: 
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(i) at low temperatures the condition of quasi-saturation is invoked so that (1 - 

(ii) neglect terms proportional to afa iaJa j  because no correlation in the location 

(tu) terms proportional to (2S) ' /*afa;a;  are neglected because they are claimed 

After carrying out these approximations the Hamiltonian of the system takes the 

a f a ; / 2 ~ ) ' / 2  U I; 

of the different spin deviations is assumed; 

to be smaller than the terms retained by the ratio (a fa i ) / (2S) ' l2 .  

following expression: 

Once we have arrived at this point we shall discuss the construction of the Hamil- 
tonian of the superlattice system made up of alternating films of ferromagnetic and 
non-magnetic materials (see figure 1). 

For a spin located in the monatomic layer a the Hamiltonian should be 

X = -J[S,.S,(l + 6 )  + S a . S b l - g P B H S f .  (6) 

SYSTEM 1 SYSTEM 2 
Figum L (a) Scheme of the umt e l l  of the superlatiice for syslcm I showing the 
different monatomic layers of magnetic malerial. (b) ' h e  same scheme lor system 2. 

The final term of the right-hand side stands for the Zeeman interaction with the 
external field. The term Sa . Sa( 1 + 6)  takes into account the interactions of the 
atom located at the position 1 with its four nearest neighbours located in the Same 
monatomic layer a, while the term S, . S, reflects the interaction with the nearest 
neighbour located in the monatomic layer b. 

In order to analyse the contribution of the Sa Sa( 1 + 6)-type terms we should 
have in mind the simple cubic structure of the material and the transformation given 
by the relations (2), (3) and a two-dimensional Fourier transformation (in the plane 
of the spins) similar to equation (4). In so doing, after some algebra, it is possible to 
arrive at the following expression: 

JS, . Sa( 1 + 6) = J S  C[4 -  C COS K,u + COS I C Z a ) ] a K a K .  t (7) 
K 

Here a is the lattice parameter of the simple cubic atomic cell and IC, and K ,  are 
the X- and Zcomponents of the wavevector K. 
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Similarly, the evaluation of the S,.S,-type terms leads to the following expression: 

J s , . s b  = 3 s c  ( - U ~ U K  - b k b K  4- a k b K  4- b L U K ) .  (*I 
K 

Here a k a K  and b k b ,  are the aeation and annihilation operators acting on the 
spins located in the monatomic layers a and b, respectively. 

The contribution arising from the Zeeman interaction with the external applied 
field of intensity H directed along the Z-axis is given by the expression: 

The contribution to the Hamiltonian of the superlattice arising from the spins 
located in the monatomic layer a is given by the expressions (7), (8) and (9). The 
contribution of the remaining monatomic layers of the unit cell can be obtained easily 
in the same way. We shall comment briefly on the case of the last monatomic layer 
of the unit cell (layer c in figure 1). In this case the interaction with the spin located 
in the lower layer should be with the spin located in the layer a' belonging to the 
following unit cell. Furthermore between layers c and a' we have a film of non- 
magnetic material, so the intensity of the interaction between both spins is gauged by 
Jr instead of J. 

The monatomic layer a' is related with the monatomic layer a by means of the 
periodicity conditions. The creation and annihilation operators a't, a' are related 
with at,  a hy means of the Bloch theorem: 

(10) = aeiq.L = at,-iqJ 

where L is the length of the unit cell of the superlattice and q is the wavevector in 
the Ydirection By using relation (10) the term of the interaction between the layers 
c and a' could be written in the following way: 

Once we have arrived at this point we can formulate the Hamiltonian of the 
superlattice collecting all the preceding terms. The Hamiltonian is an N x N complex 
matrix, N being the number of monatomic layers in the unit cell. The following step 
b to diagonalize the Hamiltonian; the eigenvalues obtained in this way are nothing 
but the vibrational modes of the spin network which are directly related with the 
BoseEinstein occupation factors through the following expression: 

aiKaqK = qqK = [ e x p ( f i w q K / / c B T )  - I]-' .  (12) 

Expression (12) gives the average value of the number of magnons excited in the 
mode ( q ,  K), where q ,  K are the wavevectors in the directions perpendicular and 
parallel to the superlattice. The total number of magnons excited at a temperature T 
is obtained by summing the contributions of all the modes. To carry out this summa- 
tion we make use of the periodicity of the superlattice in q and the periodicity of the 
cubic lattice in K. Using the Fburier expansion given by (4) and after some algebra 
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it is pmsible to show that the summation over all the modes can be transformed in a 
summation Over q and K, 
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where the integration was camed out in the first Brillouin zone by using 5 x lo5 
points in reciprocal space. 

la regard to how we remove the singularity at zero frequency ( q  = 0 ,  K = 0 )  
we use an old trick, which was suggested and described by Klein and Smit [16]. 
Essentially we consider a finite-sized clystal with ked  end boundary conditions rather 
than periodic boundary conditions. "hiis means there is no w = 0 state, but a state 
very close by at K = r/L. As shown in [16] this dependence on the size of the 
crystal (through L) is very weak and we have checked that for reasonable values of L 
we obtain the proper bulk behaviour for thick films. Recent treatments [17J have also 
shown how anisotropy fields or the dipolar fields can remove the singularity at w = 0. 
The accuracy of the numerical integration was checked by changing the number of 
points. A calculation of the thermal demagnetization of bulk iron was also carried 
out and a slope of 1.50 was obtained in the In(AM/M) against In(T) plot. The 
magnetization at temperature T b given by 

M ( T ) / M ( T  = O )  = - [(q)/sTota,l (14) 

where STo,,, b a normalization factor over the total spin of the unit cell. 
In the case of system 2 involving two different magnetic materials the construction 

of the Hamiltonian is completely similar to the case mentioned above. Some care 
must be taken when the contribution of the spins located at the interfaces of both 
materials is formulated. For the sake of clarity we shall write out these terms explicitly. 
Making reference to figure 1 the term that takes into account the interaction between 
the monatomic layers c and d is given by 

.IISc. S, = J I ~ [ - S , c k c K  - S , d L d ,  + ( S , S , ) 1 / 2 ( c L d ,  + d k c K ) ]  (15) 
K 

where .I, is the exchange integral between both materials, S, and S, are the values 
of the spin angular momenta for materials A and B, respectively. 

The interaction of a spin located in the monatomic layer f with the corresponding 
spin in the layer a' that belongs to the next unit cell is given by 

J,S, .S, ,  = . r I p s l f ~ f K  - S , a ~ a K + ( s , s , ) ~ / Z ( f ~ a K e l q . L a ~ f K e - i ~ L ) ]  
K 

(16) 

where we have used the Bloch theorem given by relations (10). 

3. Results 

We shall consider first the low-temperature magnetization properties. 
uniform sample the magnetization should decrease according to Bloch's law 

In a bulk 

M ( T ) / M ( O )  = 1 - BT3l2. (17) 
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Except for very thin samples this result is independent of the sample size [16], but 
in a superlattice the situation can be quite different. As usual the low-temperature 
magnetization depends on the spin wave spectrum. The spin waves of the superlattice 
will differ substantially from those in the bulk samples of the individual materials in 

(i) The periodicity of the superlattice introduces gaps into the spin wave spectrum. 
These gaps allow the spin wave frequencies to differ considerably from the w = D K2 
dispersion law for bulk materials. Thus the magnetization can also deviate from the 
P I 2  law. 

(ii) The interface exchange interaction can be quite different from the exchange 
constant in each of the constituent films. For small wavevectors q, perpendicular 
to the layers, the dispersion relation will be approximately given by w = D,,q*, 
where De, depends on the exchange constants in materials A and B (J1 and Jz), 
the magnitude of the spins (S, and S,) and the interface exchange constant J I .  

For very thin ferromagnetic layers the interface exchange constant can play a 
significant role in determining Dew While De, does not change the 312-power law, 
it governs the size of the coefficient B in Bloch's T312 law, with a large value of Des 
leading to a small value of the coefficient 8. 

From the diagonalization of the Hamiltonian we found the net spin deviation 
for each excitation and then performed a thermal average to find the change in 
magnetization as a function of the temperature. We note that care must be taken in 
the thermal average to avoid non-physical singularities [16]. 

two respects. 

3.1. *stems ofpromagnetic and non-magnetic malerials 

In the first case we have studied the thermal behaviour of a superlattice containing 
alternating films of magnetic and nonmagnetic materials. As we have mentioned 
above, for the purpose of numerical calculations we have taken S = 5 / 2  and J = 
27.6 x erg, and the study has been performed as a function of the number 
of monatomic layers in the unit ceU and the strength of the exchange interaction J I  
between two consecutive magnetic films across the non-magnetic film. 

3.1.1. Weak coupling. In this limit we have taken the value of JI to be lo-" erg 
( J I  << J), which is appropriate for a thick layer of nonmagnetic spacer material. 

In figure 2 we show the thermal behaviour of the magnetization as a function 
of the thickness of the magnetic film. It is evident from the figure that the system 
has a clear tendency to behave as a bidimensional ferromagnet, that is the decrease 
in M(T) over the entire temperature range looks closer to a h e a r  law than to a 
T312 power law. This type of behaviour is more evident as the number of layers 
of the unit cell decreases and the system deviates clearly from the T312 power law 
(see figure 3). Nevertheless, if we change the range of temperatures we observe a 
variation of the exponent that is more evident as the thickness of the magnetic film 
decreases. This type of behaviour is also shown in figure 3. We have performed a 
complete study of the evolution of the exponent, varying the range of temperatures 
over which the thermal demagnetization is considered. We observe that even in the 
case of the thinnest magnetic layer the system exhibits a Bloch law type of behaviour 
provided we consider only very low temperatures, (namely 0.1 to 1 K). As we increase 
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40 T ( ?) 
F@rc Z Thermal behaviour of the mayetbation zs a function of the thickness of the 
unit cell (in monatomic layen). The value 01 Jt b IO-” erg and the cxtemal applied 
field ir zem 
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Fkure 3 Enation of Ihc exponent of the ‘p/2 cower law’ as a function 01 the 
I h k n c s  of the unit all. Stm&Coupiing limit for T < 30 K, L. Wakeoupling limit 
Ior T <  I K, *:T$5 K, 0; T <  10 K, H; T<100 K, A. 

the range of remperatures over which the thermal demagnetization is considered the 
exponent changes from 1.53 to 1.25. 

This effect may be explained by taking into account the magnon band structure 
of the superlattice. As the number of layers of the unit cell decreases the effect of 
the gaps becomes more important because they are larger and the distortion of the 
bands from the parabolic form extends over a wider range of the reduced Brillouin 
zone. This deviation from the parabolic form of the bands is reflected by a variation 
of the exponent of the PI *  power law. 

As the range of temperature increases the number of gaps involved in the thermal 
population of the magnon bands increases as well and a larger deviation of the 
exponent from the ideal value of 312 is observed, (see figure 3). Increasing the 
number of layers of the unit cell, the gaps become smaller and their influence over 
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the parabolic form of the bands is smaller; as a result of this the exponent is more 
similar to 312. 

3.1.2 Slrong coupling. The limit of strong coupling between two consecutive magnetic 
films LE simulated by using a value of J, = 2 x erg, very near to the value 
of J. The results are shown in figure 4. In this case the thermal behaviour of 
the magnetization is almost independent of the number of monatomic layers of the 
unit cell and the exponent of the power law is 1.53 in all cases (see figure 3). 
This small deviation with respect to the value of 3L! can be explained by taking into 
a m u n t  the variation of the quadratic dispersion relation arising from the presence 
of gaps generated by the periodic structure. Thus we obsewe that the strength of JI 
controls the thermal behaviour of the magnetization of the superlattice system leading 
to a very important dependence on the layer thickness in the weakcoupling limit or 
a behaviour that is independent of layer thickness in the strongcoupling h i t  ?b 
understand this we need to take into account the features of the superlattice magnon 
spectrum. 

0.98 1 
! 

8 
& 
0 

t? 
~ a 4  
1 0 2  , . , , , , , 

80 101 
T (p) 0.970 ’ 20 ’ ’ 40 

FLgum 4 Thermal behaviour of lhe magnetization as a function of the thickness ot the 
unit ell on monatomic layers). me value of JJ b 2 x lo-’’ erg and the external 
applied field is zem. 

Physically the collective modes of the superlattice result from the superposition of 
individual film modes. When JI is small the resulting superlattice modes form very 
narrow bands and we have nearly discrete levels similar Eo that of an isolated film. 
As the strength of the coupling at the interfaces increases, the superlattice bands 
broaden. Rnaily when J, is similar in size to J ,  the broadening of the bands leads to 
a quasi-continuous band similar to those in bulk materials. Thus in the weak-coupling 
limit one has a set of states similar to that of a single film, while in the strong-coupling 
limit one has a set of energy levels which is close to that of a bulk material. This 
explains the strong dependence on the layer thickness in the weak-coupling limit since 
the smaller the number of layers in a unit cell, the larger the separation between the 
energy levels, and the quasi-bidimensional behaviour is more evident 

3.1.3. E’ec& of Ihe euemal applied @fd. The immediate effect of a magnetic field 
is the introduction of an energy gap into the spin wave spectrum. The effect of the 
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applied field on the thermal behaviour of the magnetization is presented in figure 5. 
As the magnetic field is increased, a slower decrease of the magnetization is observed. 
Furthermore, we have found that the effect of the magnetic field increases as the 
number of monatomic layers of the unit cell decreases. The effect is more important 
when the intensity of the field increases because the gap generated in the magnon 
spectrum is proportional to the size of the field, A E  = g p B H .  

B Uanhez and R E Cam@ 

20 40 60 80 1 9 0 '  0.88 
T( K )  

Figmm 5 Thermal behaviour of Ihe magnetization Ior the mil cell wilh WO monalomic 
layen as a funclion of the inlensity of the exlemal applied field (0. 2 and 5 T). The full 
N W C ~  and full symbols indicate strong mupling and the broken mrnes indicate weak 
mupling. 

It is also observed that the effect is more important in the case of weak coupling. 
The addition of a magnetic field produces an exponential variation of M ( T )  in the 
low-temperature regime but an asymptotic behaviour indicating a A M / M  LX TO type 
of dependence is observed in the high-T regime with an exponent Q clearly larger 
than 3/2 (figure 6). 

3.2. @stem of WO diflerent femomagnelic malerials 

We now turn to the results for a system of two different ferromagnetic materials that 
interact ferromagnetically at the interfaces. Some preliminary results for this system 
have been published in ICM'88 proceedings [IS]. 

For the purposes of numerical calculations material 1 will be considered to have 
a moment SI = % while material 2 will have a moment S, = 5. The corresponding 
values for the exchange integrals will be J ,  = 14.19 x and J2 = 27.6 x 

As in the preceding case this study has been performed as a function of the 
interface coupling strength, the number of monatomic layers of the unit cell and the 
intensity of the external applied field. 

3.21. Weak coupling. The limit of weak coupling at the interfaces has been simulated 
by taking J, = IO-'' erg. In figure 7 we show the thermal behaviour of the magne- 
tization as a function of the number of monatomic layers in the unit cell. Clearly the 
magnetization decreases faster as the number of layers of the unit cell decreases. This 

erg. 
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Flgure 6 Delamination of the exponent of the YF"F'' power law' for the 20 monatomic 
layer unit cell. Data obtained with external applicd fields of 2 T (A) and S T (0) are 
also shown making evident the departuure of the p e r  law owing to the eiTect of the 
field. 

type of behaviour is similar to that we found in the first system studied. On the other 
hand, when we by to characterize this type of behaviour in terms of the T3I2 power 
law we observe that the =lues for the exponent wry between 1.54 for the 'thinnest 
cell' (U2 monatomic layers) and 1.51 for the 'thickest cell' (20nO monatomic layers). 
The small deviation with respect to the value of 3LZ could be explained by taking 
into account the small variation of the quadratic dispemion relation introduced by 
the energy gaps owing to the periodicity of the superlattice. 

0.9975 

0 
+: 
\ 

B 
0.9900 

0.9825 

Figure 7. 'Ihermal khanour  of the magnetization 
as a function of the thicltness of the unit cell for 
syslem 2 in the weakcoupling limil for H = 0 T 

Figure 8 Thermal behaviour of the magnetization 
as a function of Ihe thicknes of the unit cell for 
system 2 in the nmng-coupling limit for H = 0 T 

3.22. Strong coupling. In the case of strong coupling the value assigned to JI was 
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J, = J2. The decrease of the magnetization with temperature as a function of the 
number of monatomic layers of the unit cell is shown in figure 8. A very intriguing 
type of behaviour is found in thiu case since the magnetization decreases faster as 
the number of monatomic layers of the unit cell increases. This type of behaviour 
is opposite to that observed for the weak-coupling case. 'Ib understand this we note 
that M ( T )  tends towards the bulk behaviour of the material With the lower Curie 
temperature as the number of monatomic layers of the unit cell b increased. In 
the weak-coupliig limit the wlue of D, is smaller for thinner layers (where the 
interface coupling is important) and then increases for thicker layers (nearing the 
bulk behaviour). This leads to the more rapid decrease in the magnetization with 
temperature seen for a smaller number of layers in figure 7. The opposite occurs in 
the strong-coupling limit. 

Explicit examples of the superlattice magnon spectrum are presented in figure 9 
for both the weak-coupling limit (figure 9(a)) and the strong-coupling limit (fig 
ure 9(6)). Here we plot the frequency as a function of the wavevector perpendicular 
to the layers. In figure 9(a) we see distinctly the 'softer' value of De, for a system with 
a smaller number of layers in a unit cell, that is the curvature near q = 0 is smallest 
for the 2/2 structure. In contrast figure 9(b) shows that in the strong-coupling limit the 
curvature is smallest for the 10/10 structure. In both the strong- and weak-coupling 
limits we see the gaps introduced by the superlattice periodicity. When comparing 
the thermal response of the strong- and the weak-coupling limits, one must remember 
that the excitation energies for the weak-coupling case. are significantly smaller than 
for the strong-coupling case. 

B Maninez und R E  Camley 

Figure 9. Comparison of h e  first magnon bands as a function of the thickness of the 
wit ell: (a), weakcoupling limic (b), slmngcoupling limit. Some bnds art shown in 
the reduced-zone sheme. 

As mentioned earlier the band gaps introduced by the periodic structure of the 
superlattice (figure 9) should allow deviations from the power law. In the 
temperature range from 1 to 30 K the wlues found for the exponent in this case vary 
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between 1.58 for the (2ORO) sample and 1.51 for the (Zn) sample. 
As we mentioned when we discussed the results of the first system the immediate 

effect of a magnetic field is the introduction of an energy gap into the spin wave 
spectrum. In figure 10 we show the behaviour of the magnetemtion as a function of 
the intensity of the external applied field. A slower decrease of the magnetization 
with temperature is observed. 
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4. Conclusions 

We have studied the spin wave spectrum of the two systems, the first composed 
of alternating films of ferromagnetic and non-magnetic materials and the second of 
alternating films of two different ferromagnetic materials. In both cases the study has 
been performed as a function of the applied field, the number of monatomic layers 
in the unit cell and the intensity of the interaction in the interface of the different 
materials. 

For the first system a clear tendency to a bidimensional type of behaviour is found 
when the exchange coupling at the interface is very small ( J ,  < J ) .  When J ,  is very 
small the successive films of the magnetic material are almost isolated one from each 
other and the thermal behaviour of the magnetization shows a clear dependence on 
the number of monatomic layers of the unit cell. On the contrary when J ,  is very 
similar to J the dimensional effects disappear and what we get is a variation of the 
spin wave stiffness constant DeK. This variation arises boom the dependence of De, 
on J and J,. The role of J,  increases when the unit cell becomes thinner. 

In the case of the second system we again observe that the exchange coupling 
at the interface of both materials plays an important role and is the parameter that 
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governs the thermal behaviour of the magnetization. M(T) tends towards the bulk 
behaviour of the material with the lower Curie temperature as the unit cell becomes 
thicker. In the weak-coupling limit the role of JI is more important as the unit cell 
becomes thinner. Thus the mlue of De, decreases leading to a more rapid decrease 
of the magnetization with temperature for thinner unit cells. In the limit of strong 
coupling the op-posite type of behaviour is observed. 

In the study of both systems we have observed that the application of an ex- 
ternal magnetic field has an important influence in the thermal behaviour of the 
magnetization of the system, making the mriations of M signi6cantly smaller. 

A near exponential dependence is observed for M ( T )  in the low-T regime but 
an asymptotic behaviour indicating a A M / M  o( Tu type of dependence h observed 
in the high-T regime with a value of a clearly different from 3t2. 
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